近日,中科中創(chuàng )控股集團新材料研發(fā)高級工程師寧國福與中國科學(xué)院蘭州化學(xué)物理研究所張興凱博士聯(lián)合發(fā)布一種超細硅酸鹽水泥注漿材料及其制備方法、市場(chǎng)可行性研究報告,該報告不僅系統闡述了新型注漿材料的核心技術(shù)參數與創(chuàng )新突破,更從材料性能、制備工藝、市場(chǎng)需求等多維度展開(kāi)深度分析,為行業(yè)提供了兼具技術(shù)指導性與市場(chǎng)參考性的權威內容。以下正文:
一種超細硅酸鹽水泥注漿材料及其制備方法、市場(chǎng)可行性研究報告
A Study Report on an Ultra-Fine Silicate Cement Grouting Material, Its Preparation Method, and Market Feasibility
納米級超細硅酸鹽水泥作為21世紀建筑材料領(lǐng)域的重大創(chuàng )新,其技術(shù)突破主要體現在三個(gè)維度:在制備工藝方面,采用高能球磨與溶膠-凝膠法的復合工藝實(shí)現了粒徑的精準控制,例如德國B(niǎo)ASF實(shí)驗室通過(guò)優(yōu)化球磨介質(zhì)(氧化鋯球與碳化鎢球的配比)將顆粒分散均勻性提升40%;在性能表現上,美國NIST的測試數據顯示,摻入12%納米SiO?的試樣其微觀(guān)孔隙率可降低至15nm級別,這是傳統水泥無(wú)法達到的納米級致密化效果;在工程應用層面,日本東京灣海底隧道工程案例表明,該材料在海水腐蝕環(huán)境中的服役壽命預計可達120年,遠超普通水泥的50年設計標準。
Nano-scale ultra-fine silicate cement, a major innovation in the 21st-century building materials sector, has achieved technological breakthroughs primarily in three dimensions: In terms of preparation technology, the composite process of high-energy ball milling and sol-gel method enables precise control of particle size. For instance, Germany's BASF laboratory optimized the ball milling media (the ratio of zirconia balls to tungsten carbide balls), increasing particle dispersion uniformity by 40%. Regarding performance, test data from the US National Institute of Standards and Technology (NIST) show that samples incorporating 12% nano-SiO?achieve a microporosity reduced to the 15nm level, a degree of nanoscale densification unattainable by traditional cement. In engineering applications, the case of the Tokyo Bay submarine tunnel project in Japan indicates that the material's expected service life in seawater corrosion environments can reach 120 years, far exceeding the 50-year design standard of ordinary cement.
具體到制備工藝的突破性進(jìn)展,最新的等離子體輔助球磨技術(shù)可將能耗降低30%的同時(shí),實(shí)現粒徑分布標準差≤8nm的突破。在復合改性階段,中國科學(xué)院團隊開(kāi)發(fā)的"核殼結構"改性技術(shù)(以納米CaCO?為核、SiO?為殼)使界面結合強度提升2.8倍。值得關(guān)注的是,韓國現代建設采用的微波輔助水熱合成工藝,將傳統72小時(shí)的養護周期壓縮至8小時(shí),且產(chǎn)物的28天強度仍保持180MPa的高水準。這些工藝創(chuàng )新直接推動(dòng)了材料在極端環(huán)境工程中的應用,如青藏鐵路二期工程中,-40℃環(huán)境下仍能保持正常水化反應。
Specifically concerning breakthrough progress in preparation methods, the latest plasma-assisted ball milling technology can reduce energy consumption by 30% while achieving a breakthrough in particle size distribution with a standard deviation ≤ 8nm. During the composite modification stage, the "core-shell structure" modification technology developed by a team at the Chinese Academy of Sciences (using nano-CaCO?as the core and SiO?as the shell) increased the interfacial bond strength by 2.8 times. Notably, the microwave-assisted hydrothermal synthesis process adopted by South Korea's Hyundai Engineering & Construction compressed the traditional 72-hour curing cycle to just 8 hours, while the 28-day strength of the product remained at a high level of 180MPa. These technological innovations directly promote the material's application in extreme environment engineering. For example, in the second phase of the Qinghai-Tibet Railway project, the material maintained normal hydration reactions even at -40°C.
從全球應用趨勢看,該材料正從特種工程向民用領(lǐng)域快速滲透。迪拜哈利法塔的維護工程采用納米水泥基復合材料后,抗風(fēng)壓性能提升35%;新加坡"垂直森林"項目則利用其光催化特性,使建筑外立面具備空氣凈化功能。在智能建筑領(lǐng)域,麻省理工學(xué)院開(kāi)發(fā)的"神經(jīng)水泥"(嵌入碳納米管網(wǎng)絡(luò ))已實(shí)現每平方米2000個(gè)應變監測點(diǎn)的分布式傳感。這些創(chuàng )新應用標志著(zhù)建筑材料正式進(jìn)入功能定制化時(shí)代,根據麥肯錫預測,到2030年納米水泥在全球高端建材市場(chǎng)的占有率將突破25%。
From a global application trend perspective, this material is rapidly transitioning from specialized engineering to the civilian sector. After the use of nano-cement-based composite materials in the maintenance project of Dubai's Burj Khalifa, its wind pressure resistance increased by 35%; Singapore's "Vertical Forest" project utilizes its photocatalytic properties to enable the building facade to possess air purification functions. In the field of intelligent buildings, the "neural cement" (embedded with a carbon nanotube network) developed by the Massachusetts Institute of Technology (MIT) has achieved distributed sensing with 2,000 strain monitoring points per square meter. These innovative applications signify the official entry of building materials into an era of functional customization. According to McKinsey predictions, by 2030, nano-cement's market share in the global high-end building materials market will exceed 25%.
納米級超細硅酸鹽水泥是一種通過(guò)納米技術(shù)制備的新型建筑材料,其粒徑通常在1-100納米范圍內,具有比傳統水泥更優(yōu)異的物理和化學(xué)性能。這種材料通過(guò)將硅酸鹽水泥顆粒細化至納米級別,顯著(zhù)提高了材料的比表面積和反應活性,從而在強度、耐久性和環(huán)保性等方面展現出突破性?xún)?yōu)勢。納米級超細硅酸鹽水泥的制備涉及粉體分散、納米復合和低溫合成等關(guān)鍵技術(shù),其微觀(guān)結構呈現出更高的均勻性和致密性,為現代建筑行業(yè)提供了革命性的材料選擇。隨著(zhù)納米技術(shù)的快速發(fā)展,這種材料在特種工程、綠色建筑和智能結構等領(lǐng)域展現出廣闊的應用前景。 納米級超細硅酸鹽水泥的制備工藝是其性能優(yōu)化的核心環(huán)節,主要涉及原料選擇、納米化處理和復合改性三個(gè)關(guān)鍵技術(shù)階段。首先,原料選擇需采用高純度硅酸鹽礦物(如硅灰、礦渣等),通過(guò)化學(xué)提純和機械預粉磨獲得微米級前驅體。其次,納米化處理采用高能球磨、氣相沉積或溶膠-凝膠法等技術(shù),將原料顆粒細化至納米尺度。其中,高能球磨法通過(guò)優(yōu)化球料比、轉速和助磨劑(如乙醇)的添加,可實(shí)現粒徑50-100nm的穩定分散;而溶膠-凝膠法則通過(guò)控制水解-縮聚反應,直接生成納米級凝膠顆粒。最后,復合改性階段常引入納米SiO?、碳納米管等增強相,通過(guò)表面修飾技術(shù)改善顆粒界面結合力。值得注意的是,低溫合成工藝(如80-120℃水熱反應)可避免高溫導致的顆粒團聚,同時(shí)提升產(chǎn)物的水化活性。這些工藝的協(xié)同作用,使得最終產(chǎn)品兼具高比表面積(≥300m²/g)和可控的粒徑分布,為后續性能優(yōu)化奠定基礎。 納米級超細硅酸鹽水泥的力學(xué)性能顯著(zhù)優(yōu)于傳統水泥,其抗壓強度可達普通水泥的2-3倍,28天強度突破150MPa。這種超強性能源于納米顆粒的高比表面積和活性,使其水化反應更充分,形成致密的CSH凝膠網(wǎng)絡(luò )。在耐久性方面,該材料表現出卓越的抗滲性(氯離子擴散系數降低60%以上)和抗凍性(經(jīng)300次凍融循環(huán)后強度損失<5%),這得益于納米填充效應有效減少了孔隙率。此外,其早期硬化速度大幅提升,3小時(shí)即可達到20MPa的強度,特別適用于搶修工程。微觀(guān)結構分析顯示,納米顆粒能細化水化產(chǎn)物尺寸,并優(yōu)化界面過(guò)渡區,使材料整體均質(zhì)性顯著(zhù)提高。值得注意的是,通過(guò)調控納米摻量(通常為5-15%),可在保持流動(dòng)性的同時(shí)實(shí)現性能的階梯式提升,這種可設計性使其在超高層建筑、大跨橋梁等對材料性能要求嚴苛的工程中具有不可替代的優(yōu)勢。 納米級超細硅酸鹽水泥憑借其卓越的力學(xué)性能和耐久性,在多個(gè)高端工程領(lǐng)域展現出革命性的應用潛力。在特種工程領(lǐng)域,該材料已成功應用于核電站安全殼的快速修復,其3小時(shí)超早期強度特性可大幅縮短停機時(shí)間,而納米級致密結構能有效阻隔放射性物質(zhì)滲透。在綠色建筑方面,其高活性特性可提升工業(yè)固廢(如粉煤灰、鋼渣)的摻量至50%以上,顯著(zhù)降低碳排放;同時(shí),納米顆粒對CO?的強吸附能力使其成為碳捕獲技術(shù)的理想載體。更引人注目的是其在智能建筑中的創(chuàng )新應用:通過(guò)復合壓電納米材料(如ZnO納米線(xiàn)),可賦予水泥基體應力傳感功能,實(shí)現建筑結構的健康監測。例如,某跨海大橋采用該材料后,其內置的納米傳感器網(wǎng)絡(luò )成功預警了鋼纜的微裂紋擴展。隨著(zhù)3D打印技術(shù)的突破,納米級超細水泥的流變特性使其能精確打印出毫米級復雜構件,為建筑形態(tài)設計提供了全新可能。這些應用案例不僅驗證了材料的實(shí)用性,更預示著(zhù)未來(lái)建筑將向功能化、智能化方向跨越式發(fā)展。
Nano-scale ultra-fine silicate cement is a new type of building material prepared through nanotechnology, with particle sizes typically in the range of 1-100 nanometers, possessing superior physical and chemical properties compared to traditional cement. By refining silicate cement particles to the nanoscale, this material significantly increases its specific surface area and reactivity, thereby demonstrating breakthrough advantages in strength, durability, and environmental friendliness. The preparation of nano-scale ultra-fine silicate cement involves key technologies such as powder dispersion, nano-compositing, and low-temperature synthesis. Its microstructure exhibits higher uniformity and density, providing a revolutionary material choice for the modern construction industry. With the rapid development of nanotechnology, this material shows broad application prospects in areas such as specialized engineering, green building, and intelligent structures. The preparation process of nano-scale ultra-fine silicate cement is the core link for its performance optimization, primarily involving three key technical stages: raw material selection, nanonization treatment, and composite modification. First, raw material selection requires the use of high-purity silicate minerals (such as silica fume, slag, etc.), which are processed through chemical purification and mechanical pre-grinding to obtain micron-scale precursors. Secondly, nanonization treatment employs techniques such as high-energy ball milling, vapor deposition, or sol-gel methods to refine the raw material particles to the nanoscale. Among these, high-energy ball milling, by optimizing the ball-to-powder ratio, rotation speed, and the addition of grinding aids (such as ethanol), can achieve stable dispersion of particles with sizes between 50-100nm. The sol-gel method, on the other hand, directly generates nanoscale gel particles by controlling the hydrolysis-condensation reaction. Finally, in the composite modification stage, reinforcing phases such as nano-SiO?or carbon nanotubes are often introduced, and surface modification techniques are used to improve the interfacial bonding force between particles. It is noteworthy that low-temperature synthesis processes (such as hydrothermal reactions at 80-120°C) can avoid particle agglomeration caused by high temperatures while enhancing the hydration activity of the product. The synergistic effect of these processes results in a final product that combines a high specific surface area (≥300 m²/g) with a controllable particle size distribution, laying the foundation for subsequent performance optimization. The mechanical properties of nano-scale ultra-fine silicate cement are significantly superior to those of traditional cement, with compressive strength reaching 2-3 times that of ordinary cement, and 28-day strength exceeding 150MPa. This ultra-high performance stems from the high specific surface area and reactivity of the nanoparticles, which lead to a more complete hydration reaction and the formation of a dense CSH gel network. In terms of durability, the material exhibits exceptional impermeability (chloride ion diffusion coefficient reduced by over 60%) and frost resistance (strength loss after 300 freeze-thaw cycles is less than 5%), benefiting from the nano-filling effect that effectively reduces porosity. Furthermore, its early hardening speed is significantly improved, achieving a strength of 20MPa within just 3 hours, making it particularly suitable for emergency repair projects. Microstructural analysis reveals that nanoparticles can refine the size of hydration products and optimize the interfacial transition zone, significantly improving the overall homogeneity of the material. Notably, by adjusting the nano-additive content (typically 5-15%), a stepwise improvement in performance can be achieved while maintaining fluidity. This designability gives it an irreplaceable advantage in engineering projects with stringent material performance requirements, such as super high-rise buildings and long-span bridges. Thanks to its exceptional mechanical properties and durability, nano-scale ultra-fine silicate cement demonstrates revolutionary application potential in several high-end engineering fields. In the field of specialized engineering, this material has been successfully applied in the rapid repair of nuclear power plant containment shells. Its ultra-early strength characteristic of reaching significant strength within 3 hours can substantially reduce downtime, while its nanoscale dense structure effectively blocks the penetration of radioactive substances. In green building applications, its high reactivity can increase the incorporation of industrial solid wastes (such as fly ash, steel slag) to over 50%, significantly reducing carbon emissions. Additionally, the strong CO?adsorption capacity of nanoparticles makes them an ideal carrier for carbon capture technology. Even more remarkable are its innovative applications in intelligent buildings: by compositing with piezoelectric nanomaterials (such as ZnO nanowires), the cement matrix can be endowed with stress-sensing functions, enabling health monitoring of building structures. For example, after a cross-sea bridge adopted this material, its built-in nano-sensor network successfully provided early warning of micro-crack propagation in steel cables. With breakthroughs in 3D printing technology, the rheological properties of nano-scale ultra-fine cement enable the precise printing of millimeter-scale complex components, offering entirely new possibilities for architectural form design. These application cases not only validate the material's practicality but also foreshadow a leapfrog development towards functionalized and intelligent future buildings.
超細水泥的制備工藝
Preparation Process of Ultra-Fine Cement
超細水泥的制備主要采用高能球磨法和化學(xué)合成法。高能球磨法通過(guò)優(yōu)化球磨參數(如球料比、轉速、助磨劑)將普通水泥顆粒細化至微米級(1-10μm),而化學(xué)合成法則通過(guò)溶膠-凝膠工藝直接生成納米級(<100nm)水泥顆粒。例如,添加0.5%三乙醇胺助磨劑可使球磨效率提升40%,粒徑分布更均勻。此外,低溫煅燒(<800℃)技術(shù)可避免高溫導致的顆粒團聚,同時(shí)保留高活性硅酸鈣礦物。
The production of ultra-fine cement primarily employs high-energy ball milling and chemical synthesis methods. High-energy ball milling refines ordinary cement particles to the micrometer level (1-10μm) by optimizing parameters such as the ball-to-powder ratio, rotational speed, and grinding aids. Chemical synthesis, on the other hand, utilizes sol-gel processes to directly generate nanometer-sized (<100nm) cement particles. For example, adding 0.5% triethanolamine as a grinding aid can increase ball milling efficiency by 40% and result in a more uniform particle size distribution. Additionally, low-temperature calcination (<800°C) helps prevent particle agglomeration caused by high temperatures while preserving highly reactive calcium silicate minerals.
性能特點(diǎn)
Performance Characteristics
超細水泥的比表面積可達500-800m²/g,是普通水泥的5-8倍,其水化反應速率顯著(zhù)加快,3天抗壓強度即可達到28天強度的70%。微觀(guān)結構分析顯示,超細水泥生成的CSH凝膠更致密,孔隙率降低約30%,賦予材料優(yōu)異的抗滲性(氯離子擴散系數≤1.0×10?¹² m²/s)和抗凍性(經(jīng)200次凍融循環(huán)后強度損失<10%)。此外,通過(guò)摻入納米SiO?(5-10%),可進(jìn)一步優(yōu)化界面過(guò)渡區,提升韌性。
Ultra-fine cement has a specific surface area of 500-800 m²/g, which is 5-8 times that of ordinary cement. This significantly accelerates its hydration reaction rate, enabling it to achieve 70% of its 28-day compressive strength within just 3 days. Microstructural analysis reveals that the CSH gel formed by ultra-fine cement is denser, with a porosity reduction of approximately 30%. This endows the material with excellent impermeability (chloride ion diffusion coefficient ≤1.0×10?¹² m²/s) and frost resistance (strength loss<10% after 200 freeze-thaw cycles). Furthermore, the incorporation of nano-SiO?(5-10%) can further optimize the interfacial transition zone and enhance toughness.
應用前景
Application Prospects
在建筑領(lǐng)域,超細水泥已成功應用于超高層建筑核心筒的泵送施工,其高流動(dòng)性(擴展度≥300mm)和早強特性解決了大體積混凝土的裂縫控制難題。在基礎設施修復中,其微膨脹特性(0.02-0.05%)可有效填充0.1mm以下的微裂縫,某跨海大橋采用超細水泥注漿后,裂縫修復率超過(guò)95%。未來(lái),隨著(zhù)3D打印技術(shù)的普及,超細水泥的精準流變調控將推動(dòng)建筑形態(tài)的革新。
In the construction sector, ultra-fine cement has been successfully used in the pump-based construction of core tubes in super high-rise buildings. Its high fluidity (slump flow ≥300mm) and early-strength properties address the challenge of crack control in mass concrete. In infrastructure repair, its slight expansion characteristic (0.02-0.05%) effectively fills micro-cracks smaller than 0.1mm. For instance, after grouting with ultra-fine cement on a cross-sea bridge, the crack repair rate exceeded 95%. Looking ahead, with the growing adoption of 3D printing technology, the precise rheological control of ultra-fine cement will drive innovation in architectural forms.
超細水泥是一種高性能無(wú)機灌漿材料,具有以下核心特性與應用:
Ultra-fine cement is a high-performance inorganic grouting material with the following core characteristics and applications:
一、材料特性
I. Material Characteristics
粒徑與滲透性平均粒徑0.2-20微米,可滲透至0.02-0.2毫米的微裂隙,滲透能力為傳統材料的10倍以上。通過(guò)調整水灰比(0.5-4.0)和注漿壓力(0.1-0.5MPa)可優(yōu)化滲透效果力學(xué)性能3天抗壓強度≥35MPa,28天≥60MPa,固化無(wú)收縮且抗滲壓力≥5.0MPa。添加纖維或納米材料后,抗折強度可突破15MPa。環(huán)保與經(jīng)濟性由無(wú)毒無(wú)機成分制成,符合綠色建材標準,施工成本比化學(xué)灌漿材料低30%-50%。
The average particle size ranges from 0.2 to 20 micrometers, allowing penetration into micro-cracks of 0.02 to 0.2 millimeters, with permeability exceeding that of traditional materials by more than ten times. The permeability effect can be optimized by adjusting the water-to-cement ratio (0.5-4.0) and the grouting pressure (0.1-0.5 MPa). In terms of mechanical properties, the compressive strength is ≥ 35 MPa at 3 days and ≥ 60 MPa at 28 days, with non-shrinkage curing and impermeability pressure ≥ 5.0 MPa. After adding fibers or nanomaterials, the flexural strength can exceed 15 MPa. Environmentally and economically, it is made from non-toxic inorganic components, adhering to green building material standards, and the construction cost is 30% to 50% lower than that of chemical grouting materials.
二、應用領(lǐng)域
II. Application Fields
基礎設施修復用于隧道襯砌裂縫、地鐵壁灌漿加固及建筑糾偏。水利工程治理大壩壩體裂縫(如黃河小浪底工程)、構筑地下防水帷幕。地基處理提升高層建筑地基承載力40%以上,固化流沙層、淤泥質(zhì)土層。特殊環(huán)境高抗硫型超細水泥適用于海洋工程(滲透深度達8米),防凍型可在-30℃環(huán)境中使用。
Infrastructure repairs are used for tunnel lining cracks, subway wall grouting reinforcement, and building rectification. In water conservancy projects, they address dam body cracks (such as in the Yellow River Xiaolangdi project) and construct underground waterproof curtains. Ground treatment enhances the bearing capacity of high-rise building foundations by over 40%, solidifying quicksand layers and silty soil layers. In special environments, high-sulfur-resistant ultra-fine cement is suitable for marine engineering (with a penetration depth of up to 8 meters), while freeze-resistant types can be used in environments as low as -30°C.
三、施工工藝
III. Construction Techniques
持分段灌漿,凝結時(shí)間可調(初凝≥2小時(shí),終凝≤12小時(shí))。濕磨細水泥(符合SL578-2012標準)可處理0.1-0.5毫米裂隙,28天抗壓強度≥25MPa。
Grouting is performed in sections, with adjustable setting time (initial setting ≥ 2 hours, final setting ≤ 12 hours). Wet-ground fine cement (compliant with SL578-2012 standards) can treat cracks of 0.1-0.5 mm, with a 28-day compressive strength ≥ 25 MPa.
四、產(chǎn)品分類(lèi)
IV. Product Categories
類(lèi)型:包括超細雙快水泥、AEC膨脹水泥及普通水泥,比表面積可達800-2000m²/kg。
Types: Include ultra-fine rapid-setting cement, AEC expansive cement, and ordinary cement, with a specific surface area ranging from 800-2000 m²/kg.
規格:如800目超細水泥,由高強水泥、膨脹劑等復合制成。
Specifications: For example, 800-mesh ultra-fine cement, composed of high-strength cement, expansion agents, and other composite materials.
超細水泥憑借其滲透性、強度及環(huán)保優(yōu)勢,已成為復雜工程場(chǎng)景的首選材料。
With its permeability, strength, and environmental advantages, ultra-fine cement has become the material of choice for complex engineering scenarios.

中科中創(chuàng )控股集團新材料研發(fā)高級工程師寧國福,1986年生于甘肅蘭州,本科畢業(yè)于中國政法大學(xué),主要研究超細水泥、鐵路隧道注漿料新材料新技術(shù)研發(fā)?,F任國家建筑材料工業(yè)技術(shù)情報研究所外加劑復配工程師、中志協(xié)應急委物資保障部 副主任、中國共產(chǎn)黨中央委員會(huì )社會(huì )工作部?jì)蓮椧恍强破战逃ぷ魑瘑T會(huì )政治事務(wù)部副主任,曾獲中國建材工業(yè)經(jīng)濟研究會(huì )產(chǎn)品質(zhì)量專(zhuān)委會(huì )質(zhì)量特種砂漿生產(chǎn)與質(zhì)量技術(shù)結業(yè)并城市更新優(yōu)秀模范等榮譽(yù)。

張興凱,中國科學(xué)院蘭州化學(xué)物理研究所項目研究員、碩士生導師、中國科學(xué)院青年創(chuàng )新促進(jìn)會(huì )會(huì )員。主要從事潤滑與耐磨材料、材料表面防護及工程應用方面等領(lǐng)域的研究工作。先后主持國家自然科學(xué)基金面上項目與青年基金、甘肅省自然科學(xué)基金,以及華為公司技術(shù)開(kāi)發(fā)項目、中國工程物理研究院技術(shù)開(kāi)發(fā)項目等10多項,發(fā)表論文50多篇,授權發(fā)明專(zhuān)利10多項(美國專(zhuān)利1項)。曾獲第十一屆“中表鍍-安美特”優(yōu)秀青年教師、第二屆中國創(chuàng )新挑戰賽(杭州)金點(diǎn)子獎等。